Intro a la Teoría de Juegos, parte 3

3. Juegos con un Valor

El juego {G=(X,Y,M)} se dice que tiene un valor si

\displaystyle  v_1=v_2  \ \ \ \ \ (9)

o sea, si

\displaystyle \sup_{x\in X}\inf_{y\in Y} M(x,y)=\inf_{y\in Y}\sup_{x\in X} M(x,y),

y en este caso se llama valor del juego al número {v=v_1=v_2}.

Cuando el juego tiene un valor {v}, las estrategias maximin y minimax (si existen) se llaman estrategias óptimas. Las estrategias maximin y minimax {\bar{x},\bar{y}} cumplen la condición (8) vista anteriormente, y, si ademas el juego tiene un valor {v}, entonces evidentemente vale

\displaystyle  M(x,\bar{y})\leq v\leq M(\bar{x},y),\quad\forall x\in X,\forall y\in Y.  \ \ \ \ \ (10)

A estas relaciones (10) se hace referencia diciendo que {(\bar{x},\bar{y})} es un punto de silla de la función {M}, o que {M} tiene un punto de silla en {(\bar{x},\bar{y})}.

De (10) se sigue fácilmente que {v=M(\bar{x},\bar{y})}; así pues (10) se puede escribir así

\displaystyle  M(x,\bar{y})\leq M(\bar{x},\bar{y})\leq M(\bar{x},y),\quad\forall x\in X,\forall y\in Y.

Se ha visto que la existencia de un valor (9) y de estrategias maximin y minimax {\bar{x},\bar{y}} implica la existencia de un punto de silla (10). Recíprocamente, si valen las relaciones (10) de punto de silla, el juego tiene un valor {v}, y {\bar{x},\bar{y}} son estrategias óptimas para J1 y J2 respectivamente.

En este caso en que la función {M} posee un punto de silla se dice que el valor del juego {v} y las estrategias óptimas {\bar{x},\bar{y}} constituyen la solución del juego. Resolver un juego es, pues, encontrar {v,\bar{x},\bar{y}} si es que existen.

De las propiedades expuestas resulta que si hubiese dos puntos de silla, por ejemplo {(\bar{x},\bar{y}),(\tilde{x},\tilde{y})} sucedería que

\displaystyle  M(x,\bar{y})\leq v\leq M(\bar{x},y),\quad\forall x\in X,\forall y\in Y \ \ \ \ \ (11)

y

\displaystyle  M(x,\tilde{y})\leq v^\prime\leq M(\tilde{x},y),\quad\forall x\in X,\forall y\in Y \ \ \ \ \ (12)

Sustituyendo en las primeras relaciones las variables {x,y} por {\tilde{x},\tilde{y}} y en la segunda por {\bar{x},\bar{y}} resulta

\displaystyle  M(\tilde{x},\bar{y})\leq v\leq M(\bar{x},\tilde{y}),\ M(\bar{x},\tilde{y})\leq v^\prime\leq M(\tilde{x},\bar{y})

de donde resulta {v=v^\prime}. Además los cuatro puntos {(\bar{x},\bar{y}),(\tilde{x},\tilde{y}),(\bar{x},\tilde{y}),(\tilde{x},\bar{y})} son puntos de silla por lo que es indiferente para cada jugador elegir una cualquiera de sus estrategias óptimas. Es fácil ver que el punto de silla definido para los juegos de dos personas es un punto de equilibrio con la definición que se dio para los juegos de {n} personas. Debe notarse que muchas propiedades enunciadas para los jugadores 1 y 2 siguen siendo válidas con ciertos cambios permutando entre sí los jugadores. Esto se debe a que el juego {G=(X,Y,M)} se corresponde con el juego {G^\prime=(Y,X,M^\prime)}, donde {M^\prime(y,x)=-M(x,y)} ya que ambos son el mismo juego cambiando de nombre a los dos jugadores. Este hecho permite omitir las demostraciones de las propiedades que resulten análogas en este tipo de correspondencia.

Advertisements

About varasdemate

n00bie blogger, just recently getting the hang of blogging
This entry was posted in Teoría de Juegos and tagged , . Bookmark the permalink.

2 Responses to Intro a la Teoría de Juegos, parte 3

  1. J. Sánchez says:

    Muy tuanis el post, siga publicando Hugo, saludos.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s