Notes from Ring Theory

A list of notes, by date Nov 8 – Densidad…
Nov 15

  • Pere Menal (\Cross {\sim} 1992) Ver si un módulo artiniano tiene {\End()} semilocal. Rosa Camp & W. Ricki {\rightarrow} Sí.
  • Krull ’34 {\rightarrow} Módulos Artinianos satisfacen el Teorema de Krull-Schmidt? No es difícil ver que si {M_R} es artiniano {\Rightarrow} \footnotesize(se forma una cadena descendiente)\normalsize {M_R=N_1\oplus\cdots\oplus N_s}, {N_i} indescomponibles. Es la única descomposición bajo isomorfía y reordenación de los sumandos? (Teorema de Krull-Schmidt). Facchini, H Levy, Vamos ’96 {\rightarrow} No.
  • Un {R}-módulo {M} generado por {r} elementos – {M} es imágen homomórfica de {R^r}

Ene 13

  • Módulos proyectivos finitamente generados {\leadsto} submonoides…
  • “full affine”
  • Monoids are tricky… why? No they’re not. They just have associativity and the presence of an identity
  • Fundamental theorem of abelian groups {\left(\mathds{N}^k\subseteq\mathds{Z}^k\right)}
  • {P/PJ(R)} finitely generated {\nRightarrow} {P} finitely generated. Counterexample given by Geramnov, Sakhaev
  • Fair-sized projective modules by Pavel ({A_5})
  • The trace ideal is a bi-lateral ideal: {Tr(P)=\sum_{f\in P^*}{f(P)}}{(P\rightarrow R)\in P^*=\Hom_R(P,R)}. Verify that {\left[Tr(P)\right]^2=Tr(P)}
  • Whitehead, as cited in Pavel’s article: {I} a bi-lateral idempotent ideal of {R} such that {_RI} is finitely generated {\Rightarrow I=Tr(P_R)}, with {P_R} a projective ideal
  • Hyman Bass {\rightarrow} Big proyective ideals

\chapter{Features of the Standard LaTeX Report Class}

1. Section

Use the \verb”

2. Section

” command for major sections, and
the \verb”

2.1. Subsection

” command for subsections, etc.

2.2. Subsection

This is just some text under a subsection.


This is just some text under a subsubsection.


This is just some text under a subsubsubsection.


This is just some text under a subsubsubsubsection.

3. Typesetting Commands

Select a part of the text then click on the button Emphasize (H!),
or Bold (Fs), or Italic (Kt), or Slanted (Kt) to typeset
Emphasize, Bold, Italics,
Slanted texts.

You can also typeset \textrm{Roman}, \textsf{Sans Serif},
\textsc{Small Caps}, and \texttt{Typewriter} texts.

You can also apply the special, mathematics only commands
{\mathbb{BLACKBOARD}} {\mathbb{BOLD}}, {\mathcal{CALLIGRAPHIC}},
and {\mathfrak{fraktur}}. Note that blackboard bold and
calligraphic are correct only when applied to uppercase letters A
through Z.

You can apply the size tags — Format menu, Font size submenu —
{\tiny tiny}, {\scriptsize scriptsize}, {\footnotesize
footnotesize}, {\small small}, {\normalsize normalsize}, {\large
large}, {\Large Large}, {\LARGE LARGE}, {\huge huge} and {\Huge

You can use the \verb” etc. ” environment
for typesetting short quotations. Select the text then click on
Insert, Quotations, Short Quotations:

The buck stops here. Harry Truman

Ask not what your country can do for you; ask what you can do for
your country. John F Kennedy

I am not a crook. Richard Nixon

I did not have sexual relations with that woman, Miss Lewinsky.
Bill Clinton

The Quotation environment is used for quotations of more than one
paragraph. Following is the beginning of The Jungle Books
by Rudyard Kipling. (You should select the text first then click
on Insert, Quotations, Quotation):

It was seven o’clock of a very warm evening in the Seeonee Hills
when Father Wolf woke up from his day’s rest, scratched himself,
yawned and spread out his paws one after the other to get rid of
sleepy feeling in their tips. Mother Wolf lay with her big gray
nose dropped across her four tumbling, squealing cubs, and the
moon shone into the mouth of the cave where they all lived.
Augrh” said Father Wolf, “it is time to hunt again.”
And he was going to spring down hill when a little shadow with a
bushy tail crossed the threshold and whined: “Good luck go with
you, O Chief of the Wolves; and good luck and strong white teeth
go with the noble children, that they may never forget the hungry
in this world.”

It was the jackal—Tabaqui the Dish-licker—and the wolves of
India despise Tabaqui because he runs about making mischief, and
telling tales, and eating rags and pieces of leather from the
village rubbish-heaps. But they are afraid of him too, because
Tabaqui, more than any one else in the jungle, is apt to go mad,
and then he forgets that he was afraid of anyone, and runs through
the forest biting everything in his way.

Use the Verbatim environment if you want \LaTeX to preserve
spacing, perhaps when including a fragment from a program such as:

#include // is used for standard libraries.
void main(void) // ”main” method always called first.
cout << ''This is a message.'';
// Send to output stream.

(After selecting the text click on Insert, Code Environments,

4. Mathematics and Text

It holds \cite{KarelRektorys} the following

Theorem 1
(The Currant minimax principle.) Let {T} be completely continuous
selfadjoint operator in a Hilbert space {H}. Let {n} be an
arbitrary integer and let {u_1,\ldots,u_{n-1}} be an arbitrary
system of {n-1} linearly independent elements of {H}. Denote

\displaystyle    \max_{\substack{v\in H, v\neq   0\\(v,u_1)=0,\ldots,(v,u_n)=0}}\frac{(Tv,v)}{(v,v)}=m(u_1,\ldots,   u_{n-1})    \ \ \ \ \ (1)

Then the {n}-th eigenvalue of {T} is equal to the minimum of these
maxima, when minimizing over all linearly independent systems
{u_1,\ldots u_{n-1}} in {H},

\displaystyle    \mu_n = \min_{\substack{u_1,\ldots, u_{n-1}\in H}} m(u_1,\ldots,   u_{n-1})    \ \ \ \ \ (2)

The above equations are automatically numbered as equation
(1) and (2).

5. Lists Environments

You can create numbered, bulleted, and description lists (Use the
Itemization or Enumeration buttons, or click on the Insert menu
then chose an item from the Enumeration submenu):

  1. List item 1
  2. List item 2
    1. A list item under a list item.
    2. Just another list item under a list item.
      1. Third level list item under a list item.
        1. Fourth and final level of list items allowed.
  • Bullet item 1
  • Bullet item 2
    • Second level bullet item.
      • Third level bullet item.
        • Fourth (and final) level bullet item.
  • Description List Each description list item has a term
    followed by the description of that term.

  • Bunyip Mythical beast of Australian Aboriginal legends.

    6. Theorem-Like Environments

    The following theorem-like environments (in alphabetical order) are available
    in this style.

    This is an acknowledgement

    This is an algorithm

    This is an axiom

    This is a case

    Claim 1
    This is a claim

    This is a conclusion

    This is a condition

    This is a conjecture

    Corollary 2
    This is a corollary

    This is a criterion

    Definition 3
    This is a definition

    Example 1
    This is an example

    Exercise 1
    This is an exercise

    Lemma 4
    This is a lemma

    This is the proof of the lemma.

    This is notation

    This is a problem

    Proposition 5
    This is a proposition

    Remark 1
    This is a remark

    This is a solution

    This is a summary

    Theorem 6
    This is a theorem

    Proof: This is the proof.


    \chapter{The First Appendix}

    The appendix fragment is used only once. Subsequent appendices can be created using the
    Chapter command.

    \chapter{The Second Appendix}

    \chapter{The Third Appendix}

    Some text for the third Appendix.

    This text is a sample for a short bibliography. You can cite a
    book by making use of the command \verb”\cite{KarelRektorys}”:
    \cite{KarelRektorys}. Papers can be cited similarly:
    \cite{Bertoti97}. If you want multiple citations to appear in a
    single set of square brackets you must type all of the citation
    keys inside a single citation, separating each with a comma. Here
    is an example: \cite{Bertoti97, Szeidl2001, Carlson67}.

    \bibitem {KarelRektorys}Rektorys, K., Variational methods in Mathematics,
    Science and Engineering
    , D. Reidel Publishing Company,
    Dordrecht-Hollanf/Boston-U.S.A., 2th edition, 1975

    \bibitem {Bertoti97} \textsc{Bert\'{o}ti, E.}: On mixed variational formulation
    of linear elasticity using nonsymmetric stresses and
    , International Journal for Numerical Methods in
    Engineering., 42, (1997), 561-578.

    \bibitem {Szeidl2001} \textsc{Szeidl, G.}: Boundary integral equations for
    plane problems in terms of stress functions of order one
    , Journal
    of Computational and Applied Mechanics, 2(2), (2001),

    \bibitem {Carlson67} \textsc{Carlson D. E.}: On G\”{u}nther’s stress functions
    for couple stresses
    , Quart. Appl. Math., 25, (1967),

  • Posted in Ring Theory | Tagged , | Leave a comment

    The Fredholm Alternative

    I came across this theorem while reading basic algebraic properties of Petri Nets and I wanted to know how many of you are acquainted with it. Please post in the comments!

    Scientific Clearing House

    One of the most useful theorems in applied mathematics is the Fredholm Alternative.  However, because the theorem has several parts and gets expressed in different ways, many people don’t know why it has “alternative” in the name.  For them, the theorem is a means of constructing solvability conditions for linear equations used in perturbation theory.

    The Fredholm Alternative Theorem can be easily understood if you consider solutions to the matrix equation  $latex A v = b$, for a matrix $latex A$ and vectors $latex v$ and $latex b$.  Everything that applies to matrices can then be generalized to infinite dimensional linear operators that occur in differential or integral equations.  The theorem is:  Exactly one of the two following alternatives hold

    1. $latex A v = b$ has one and only one solution
    2. $latex A^* w = 0$ has a nontrivial solution

    where $latex A^*$ is the transpose or adjoint of A. …

    View original post 674 more words

    Posted in Uncategorized | Leave a comment

    What riding my bike has taught me about white privilege

    trending topic in the USA right now


    The phrase “white privilege” is one that rubs a lot of white people the wrong way. It can trigger something in them that shuts down conversation or at least makes them very defensive. (Especially those who grew up relatively less privileged than other folks around them). And I’ve seen more than once where this happens and the next move in the conversation is for the person who brought up white privilege to say, “The reason you’re getting defensive is because you’re feeling the discomfort of having your privilege exposed.”

    I’m sure that’s true sometimes. And I’m sure there are a lot of people, white and otherwise, who can attest to a kind of a-ha moment or paradigm shift where they “got” what privilege means and they did realize they had been getting defensive because they were uncomfortable at having their privilege exposed. But I would guess that more often than…

    View original post 1,650 more words

    Posted in Uncategorized | Leave a comment

    Alexander Grothendieck 1928–2014

    Time to read a little bit about Grothendieck.

    Gödel's Lost Letter and P=NP


    Alexander Grothendieck, who signed his works in French “Alexandre” but otherwise kept the spelling of his German-Jewish heritage, passed away Thursday in southwestern France.

    Today we mourn his passing, and try to describe some of his vision.

    Part of the story of this amazing mathematician is that in 1970 he renounced his central position at the Institut des Hautes tudes Scientifiques (IHES) in Paris, and made himself so remote shortly after formally retiring from the University of Montpellier in 1988 that not even family and friends could track him. He boycotted his 1966 Fields Medal ceremony in Moscow to protest the Red Army’s presence in eastern Europe, and declined the Crafoord Prize in 1988.

    As captured by this obituary, he had left to seek a society kinder and more just than the ones that killed his father at Auschwitz and convicted him in 1977 of violating a French law…

    View original post 3,425 more words

    Posted in Uncategorized | Leave a comment

    Reconstructing Gödel

    Gödel's Lost Letter and P=NP


    Kurt Gdel left a large amount of unpublished writings and notebooks and preserved correspondence. Called his Nachlass, German for “after-leavings” or bequest, these writings were catalogued and organized by several—including his first biographer, John Dawson, for a heroic two years. Those of highest scientific and general interest were published in volumes III, IV, and V of KurtGdel:CollectedWorks. Among them was a list of 14 numbered assertions titled “My philosophical viewpoint” but without elaboration. They are believed associated to a lecture Gdel started preparing in the early 1960s but never gave, whose draft is in the Nachlass.

    Today we are delighted to have new communications from Gdel, as we have previously received around Halloween and All Saints’ Day, so we can continue our series of interviewswithhim.

    What the Nachlass shows clearly is a perfectionist at work. Dawson’s biography relates that a two-year…

    View original post 2,197 more words

    Posted in Uncategorized | Leave a comment

    Intro a la Teoría de Juegos, parte 3

    3. Juegos con un Valor

    El juego {G=(X,Y,M)} se dice que tiene un valor si

    \displaystyle  v_1=v_2  \ \ \ \ \ (9)

    o sea, si

    \displaystyle \sup_{x\in X}\inf_{y\in Y} M(x,y)=\inf_{y\in Y}\sup_{x\in X} M(x,y),

    y en este caso se llama valor del juego al número {v=v_1=v_2}.

    Cuando el juego tiene un valor {v}, las estrategias maximin y minimax (si existen) se llaman estrategias óptimas. Las estrategias maximin y minimax {\bar{x},\bar{y}} cumplen la condición (8) vista anteriormente, y, si ademas el juego tiene un valor {v}, entonces evidentemente vale

    \displaystyle  M(x,\bar{y})\leq v\leq M(\bar{x},y),\quad\forall x\in X,\forall y\in Y.  \ \ \ \ \ (10)

    A estas relaciones (10) se hace referencia diciendo que {(\bar{x},\bar{y})} es un punto de silla de la función {M}, o que {M} tiene un punto de silla en {(\bar{x},\bar{y})}.

    De (10) se sigue fácilmente que {v=M(\bar{x},\bar{y})}; así pues (10) se puede escribir así

    \displaystyle  M(x,\bar{y})\leq M(\bar{x},\bar{y})\leq M(\bar{x},y),\quad\forall x\in X,\forall y\in Y.

    Se ha visto que la existencia de un valor (9) y de estrategias maximin y minimax {\bar{x},\bar{y}} implica la existencia de un punto de silla (10). Recíprocamente, si valen las relaciones (10) de punto de silla, el juego tiene un valor {v}, y {\bar{x},\bar{y}} son estrategias óptimas para J1 y J2 respectivamente.

    En este caso en que la función {M} posee un punto de silla se dice que el valor del juego {v} y las estrategias óptimas {\bar{x},\bar{y}} constituyen la solución del juego. Resolver un juego es, pues, encontrar {v,\bar{x},\bar{y}} si es que existen.

    De las propiedades expuestas resulta que si hubiese dos puntos de silla, por ejemplo {(\bar{x},\bar{y}),(\tilde{x},\tilde{y})} sucedería que

    \displaystyle  M(x,\bar{y})\leq v\leq M(\bar{x},y),\quad\forall x\in X,\forall y\in Y \ \ \ \ \ (11)


    \displaystyle  M(x,\tilde{y})\leq v^\prime\leq M(\tilde{x},y),\quad\forall x\in X,\forall y\in Y \ \ \ \ \ (12)

    Sustituyendo en las primeras relaciones las variables {x,y} por {\tilde{x},\tilde{y}} y en la segunda por {\bar{x},\bar{y}} resulta

    \displaystyle  M(\tilde{x},\bar{y})\leq v\leq M(\bar{x},\tilde{y}),\ M(\bar{x},\tilde{y})\leq v^\prime\leq M(\tilde{x},\bar{y})

    de donde resulta {v=v^\prime}. Además los cuatro puntos {(\bar{x},\bar{y}),(\tilde{x},\tilde{y}),(\bar{x},\tilde{y}),(\tilde{x},\bar{y})} son puntos de silla por lo que es indiferente para cada jugador elegir una cualquiera de sus estrategias óptimas. Es fácil ver que el punto de silla definido para los juegos de dos personas es un punto de equilibrio con la definición que se dio para los juegos de {n} personas. Debe notarse que muchas propiedades enunciadas para los jugadores 1 y 2 siguen siendo válidas con ciertos cambios permutando entre sí los jugadores. Esto se debe a que el juego {G=(X,Y,M)} se corresponde con el juego {G^\prime=(Y,X,M^\prime)}, donde {M^\prime(y,x)=-M(x,y)} ya que ambos son el mismo juego cambiando de nombre a los dos jugadores. Este hecho permite omitir las demostraciones de las propiedades que resulten análogas en este tipo de correspondencia.

    Posted in Teoría de Juegos | Tagged , | 2 Comments

    Very interesting article on recent developments concerning solving open problems.

    Gödel's Lost Letter and P=NP


    Richard Hamilton is the mathematician who laid out the route that eventually led to the positive solution to the three-dimensional Poincaré Conjecture by Grigori Perelman. He is the Davies Professor of Mathematics at Columbia University. While Perelman famously declined both the Fields Medal in 2006 and the official Clay Millennium Prize recognition in 2010, citing among other factors the lack of concomitant recognition for Hamilton, Hamilton was awarded the Leroy Steele prize in 2009, shared the Shaw Prize in 2011, and had earlier won the 2003 Clay Research Award alongside Terence Tao.

    Today Ken and I wish to talk about programs in mathematics, not C++ programs, but programs of attack on a hard open problem. Ken likes the British form “programme” for this.

    View original post 1,581 more words

    Posted in math culture | Leave a comment

    Teorema del punto fijo de Brouwer

    Nos damos un pequeño break de la teoría de juegos para hablar un poco del teorema del punto fijo de Brouwer. Como vimos en el post sobre teoría de juegos y el teorema del punto fijo éste es un teorema que fundamenta la teoría de juegos y un teorema muy importante en topología y topología algebraica. Veremos el teorema y su prueba en inglés.

    The theorem states the following: Let {f:D^2\rightarrow D^2} be a continuous map, where

    \displaystyle D^2 = \{(x, y)\in\mathbb{R}^2 : x^2 + y^2\leq 1\}

    Then {f} has a fixed point, i.e., there is some point {(x, y)\in D^2} with the property that {f(x, y) = (x, y)}

    Proof Suppose that {f:D^2\rightarrow D^2} does not have a fixed point, so that {f(x, y) \neq (x, y)} for all {(x, y) \in D^2}. So, for each point {(x, y) \in D^2} we get two points {(x, y)} and {f(x, y)}, and we can draw a line through them both. Extend this line beyond {(x, y)} until it meets the boundary of {D^2} (i.e., {\mathbb{S}^1}), and let {g(x, y)} be the point where this happens. So we get a function {g : D^2\rightarrow \mathbb{S}^1} as in the picture.

    This map {g} is continuous, essentially because if {(x', y')} is sufficiently close to {(x, y)}, then {f(x', y')} will be close to {f(x, y)} (since {f} is continuous) and, hence, {g(x', y')} will be reasonably close to {g(x, y)}. More rigorously, if {A} is an open arc around {g(x, y)}, then there is some radius {r} such that whenever {(x', y')} is in the open ball {B_r(x, y)} and {f(x', y')} is in the open ball {B_r(f(x, y))}, then {g(x', y')} is in {A}, as depicted below, where {A} is indicated by a bold line, and the balls around {(x, y)} and {f(x, y)} are indicated by the dotted circles of their perimeters. Any straight line which passes through both balls will hit the circle in the region {A}.

    Since {f} is continuous, there is some radius {\delta} such that {f(x', y')\in B_r(f(x, y))} whenever {(x', y')\in B_\delta(x, y)}. Hence the preimage {g^{-1}(A)} contains {B_{\min(\delta,r)}(x, y)}. The same argument can be applied to any point in the preimage, so {g^{-1}(A)} is open, i.e., {g} is continuous. If {(x, y)} is on the boundary of {D^2}, then {g(x, y) = (x, y)} no matter what {f(x, y)} is. Now define a map

    \displaystyle F : \mathbb{S}^1\times I \rightarrow \mathbb{S}^1

    by {F((x, y), t) = g(tx, ty)}. This map {F} is continuous, so we can think of it as a homotopy between the map {h : \mathbb{S}^1\rightarrow \mathbb{S}^1} defined by { h(x, y) = F((x, y), 0)} and {j : \mathbb{S}^1\rightarrow \mathbb{S}^1} defined by {j(x, y) = F((x, y), 1)}. Now {h(x, y) = g(0, 0)} for all {(x, y)}, so {h} is the constant map and thus {\deg(h) = 0}. On the other hand, however, {j(x, y) = g(x, y) = (x, y)} for all {(x, y)}, so {j} is the identity map and {\deg(j) = 1}. If {F} is a homotopy between {h} and {j}, then these degrees must be equal. Since they are not, the map {F} cannot exist. Hence nor can {g}, showing in turn that the map {f} must have had a fixed point in the first place.

    El teorema de Brouwer es un teorema de punto fijo que dice que una aplicación continua de un conjunto convexo y compacto en si mismo tiene un punto fijo. Schauder y Tychonoff ademas probaron que el teorema sigue siendo valido para espacios normados; y también para espacios localmente compactos. Luitzen Egbertus Jan Brouwer fue el principal teórico del Intuicionismo Matemático y el fundador de la topologia moderna.

    -Mathematics – The Harper Collins Dictionary. Borowski & Borwein 1991
    -Essential Topology – Martin Crossley 2005
    Links de interes:
    Brouwer fixed point theorem by Palmieri
    The Brouwer fixed point theorem and the game of Hex

    Posted in Compacidad y punto fijo, Teoría de Juegos | Tagged , , | 1 Comment

    Intro a la Teoría de Juegos, parte 2

    2. Juegos Rectangulares

    Adaptando las definiciones que se dieron anteriormente para los juegos rectangulares al caso de juegos de dos personas y de suma cero, resulta la definición que veremos a continuación en la que omitimos los calificativos “de dos personas” y “de suma cero”, que quedarán sobreentendidos en lo sucesivo. Por cierto, el juego se llama “rectangular” por la facilidad de acomodar los datos de una manera rectangular, tipo matriz.

    Despliegue rectangular de un juego

    Un juego rectangular {G} está determinado por una terna

    \displaystyle G=(X,Y,M)\ \ \ \ \ (1)

    donde {X,Y} son conjuntos cualesquiera y {M} una función que tiene por dominio el producto cartesiano {X\times Y} y que toma valores reales

    \displaystyle M:X\times Y\rightarrow\mathbb{R}.

    Mientras no se diga nada en contra se supone que {M} es una función acotada. Para una realización del juego {G} se supone que existen dos jugadores que llamaremos jugador 1, J1, y jugador 2, J2. El J1 elige un elemento {x\in X} y el J2 elige un elemento {y\in Y}, estas elecciones las hacen los dos jugadores ignorando cuál ha sido la elección del otro jugador.

    Una vez hechas estas elecciones, el J2 paga al J1 la cantidad {M(x,y)}. Así pues la ganancia del J1 es {M(x,y)} y la del J2 es el valor opuesto {\left(-M(x,y)\right)}. Por lo tanto el objetivo del J1 es conseguir el mayor valor posible de su ganancia {M(x,y)}; mientras que, por su parte, el J2 tratará de minimizar su pago {M(x,y)}.

    Los elementos {x\in X} se llaman estrategias (o estrategias puras) del J1 y los elementos {y\in Y} se llaman estrategias (o estrategias puras) del J2. La función {M} se llama función de pago del juego {G}.

    En un juego rectangular {G=(X,Y,M)} desempeñan un importante papel las dos funciones

    \displaystyle  V_1:X\rightarrow \mathbb{R},\quad V_2:Y\rightarrow \mathbb{R}

    definidas por

    \displaystyle  V_1(x)=\inf_{y\in Y} M(x,y),\quad V_2(y)=\sup_{x\in X} M(x,y)  \ \ \ \ \ (2)

    y los dos números

    \displaystyle  v_1=\sup_{x\in X} V_1(x),\quad v_2=\inf_{y\in Y} V_2(y). \ \ \ \ \ (3)

    entre estos elementos del juego siempre vale

    \displaystyle  V_1(x)\leq v_1,\quad v_2\leq V_2(y). \ \ \ \ \ (4)

    La interpretación intuitiva de estos datos es inmediata. El valor {V_1(x)} es la ganancia que tiene asegurada el J1 si elige la estrategia {x}; el número {v_1} es lo máximo que puede asegurarse si la estrategia la elige convenientemente. Análogas interpretaciones valen para {V_2(y)} y {v_2}. Un teorema importante que relaciona los valores {v_1,v_2} es el siguiente:

    Sea {G=(X,Y,M)} un juego rectangular. Entonces se verifica que

    \displaystyle v_1\leq v_2.\ \ \ \ \ (5)

    Cuando existe una estrategia {\bar{x}\in X} tal que

    \displaystyle  V_1(\bar{x})=\sup_{x\in X}V_1(x)=v_1  \ \ \ \ \ (6)

    entonces a esta estrategia {\bar{x}} se le llama estrategia maximin para el J1. Esta estrategia existe si el supremo de {V_1(x)} es accesible. De modo análogo, una estrategia minimax es una estrategia {\bar{y}\in Y} tal que

    \displaystyle  V_2(\bar{y})=\inf_{y\in Y}V_2(y)=v_2  \ \ \ \ \ (7)

    y su existencia equivale a decir que el extremo inferior de {V_2(y)} es accesible.

    Para estas estrategias se tiene, de (2), (6) y (7), que

    \displaystyle  v_1\leq M(\bar{x},y),\quad M(x,\bar{y})\leq v_2,\quad \forall x\in X,\forall y\in Y.  \ \ \ \ \ (8)

    Si existe la estrategia maximin {\bar{x}}, {v_1} es la ganancia que puede asegurarse el J1 jugando con ella. Del mismo modo, eligiendo la estrategia minimax (si existe), el J2 se asegura de que su pago no supere a {v_2} (o bien, que su ganancia no quede por debajo de {-v_2})

    proxima semana: Juegos con valor.

    Posted in Teoría de Juegos | Tagged , | Leave a comment

    Intro a Teoría de Juegos

    1. Generalidades

    El objeto de la llamada “Teoría de Juegos” es el estudio de los juegos de estrategia.

    Las primeras referencias a los juegos de estrategia se deben a E. Zermelo (1913) Uber eine anwendung der Mengenlehre auf die theorie des Schaschpiels, E. Borel (1924) Sur les jeux aus interviennent l’asard et l’habilité des joueux, y John von Neumann (1928) Zur theorie der Gesellschaftspiele. Se señala a la histórica obra de John von Neumann y Oskar Morgenstern (1944) Theory of Games and Economic Behaviour como la que consagra definitivamente la Teoría de Juegos colocándola, por su valor teórico y práctico, al mismo nivel que las otras teorías matemáticas.

    Entre las primeras aplicaciones aparte de los temas económicos y militares recibieron una gran atención las relativas a la Estadística, a lo que contribuyó en gran medida la ingente labor de A. Wald quien además de su obra Statistical Decision Functions (1950), publicó numerosos trabajos sobre este tema.

    Recientemente la Teoría de Juegos ha vuelto a destacar con la concesión del premio Nobel de Economía en 1994 a John F. Nash, Reinhard Selten y John Harsanyi, y en 2005 a Robert J. Aumann y Thomas C. Schelling; en ambos casos por sus estudios en Teoría de Juegos.

    En un sentido amplio, un juego es una confrontación entre varias personas o equipos que llamaremos jugadores, cada uno de los cuales puede ejecutar algunas acciones de las que resulta como consecuencia final una ganancia (o pérdida) para cada jugador.

    Generalmente, en la práctica, un juego de estrategia se desarrolla en etapas sucesivas en las que los jugadores intervienen alternativamente, y el resultado final del juego depende de las elecciones tomadas por los jugadores en los momentos en que les toca intervenir. Por un proceso de sintetización, un juego de este tipo se puede reducir a un juego con una estructura particularmente simplificada y que llamaremos juego rectangular o juego en forma normal. Podríamos decir que los juegos rectangulares constituyen la forma canónica o forma normal de los juegos de estrategia.

    En un juego rectangular de {n} personas, el jugador {i} dispone de un conjunto {X_i} de acciones o estrategias, de modo que en una realización del juego, dicho jugador {i} debe elegir un elemento

    \displaystyle  x_i\in X_i.

    Además, en estos juegos deben estar definidas {n} funciones

    \displaystyle M_i:X_1\times X_2\times\cdots\times X_n\rightarrow\mathbf{R}\quad\forall i=1,\ldots,n

    llamadas funciones de pago, de modo que si los jugadores {1,2,\ldots,n} han elegido respectivamente las estrategias

    \displaystyle x_1,x_2,\ldots,x_n

    entonces el jugador {i} gana la cantidad representada por

    \displaystyle M_i(x_1,x_2,\ldots,x_n).

    Si este número es negativo, el jugador {i} sufre una pérdida igual al valor absoluto de dicho número.

    La forma de desarrollarse este juego es pues, la siguiente:

    Cada jugador {i} elige una de las estrategias {x_i\in X_i}. Estas elecciones se hacen de modo que cada jugador ignora las estrategias que eligen los restantes jugadores. Una vez que los {n} jugadores han hecho su elección, se reúnen las estrategias {x_i} para calcular los valores de las {n} funciones de pago {M_i(x_1,x_2,\ldots,x_n)} y estas son las ganancias de los jugadores {1,2,\ldots,n}.

    Los jugadores conocen, previamente a su elección, las funciones {M_i}, y el modo de llevar a cabo el proceso anterior, por lo que pueden hacer un estudio previo para ver cuál es su estrategia mas favorable. La dificultad está en que el jugador {i} controla solamente una variable de la función {M_i} que determina su ganancia, mientras que las restantes {   n-1} variables las controlan los restantes jugadores.
    El jugador {i} intenta maximizar {M_i(x_1,x_2,\ldots,x_n)} pero seguramente el efecto de la elección de los otros jugadores sobre esta función le es desfavorable.

    El juego rectangular de {n} personas se dice ser de suma cero si se cumple que

    \displaystyle \sum_{i=1}^n{M_i(x_1,x_2,\ldots,x_n)}=0,\quad\forall (x_1,x_2,\ldots,x_n)\in X_1\times X_2\times\cdots\times X_n.

    En un juego rectangular de {n} personas, se dice que

    \displaystyle (\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_n)\in X_1\times X_2\times\cdots\times X_n

    es un punto de equilibrio del juego si se verifica

    \displaystyle M_i(\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_{i-1},x_i,\bar{x}_{i+1},\ldots,\bar{x}_n)\leq M_i(\bar{x}_1,\bar{x}_2,\ldots,\bar{x}_{i-1},\bar{x}_i,\bar{x}_{i+1},\ldots,\bar{x}_n)

    para todo {i} y todo {x_i\in X_i}.

    Se considera que la existencia de un punto de equilibrio debe inducir a los jugadores a elegir las estrategias que componen dicho punto, con lo que el juego queda resuelto.

    proxima semana: Juegos Rectangulares

    Posted in Teoría de Juegos | Tagged , | 4 Comments